Google

Wednesday, January 23, 2008

Biotechnology

Biotechnology is technology based on biology, especially when used in agriculture, food science, and medicine. The United Nations Convention on Biological Diversity defines biotechnology as:

"Biotechnology has contributed towards the exploitation of biological organisms or biological processes through modern techniques, which could be profitably used in medicine, agriculture, animal husbandry and environmental cloning."
  • Biotechnology is often used to refer to genetic engineering technology of the 21st century, however the term encompasses a wider range and history of procedures for modifying biological organisms according to the needs of humanity, going back to the initial modifications of native plants into improved food crops through artificial selection and hybridization. Bioengineering is the science upon which all Biotechnological applications are based. With the development of new approaches and modern techniques, traditional biotechnology industries are also acquiring new horizons enabling them to improve the quality of their products and increase the productivity of their systems.
  • Before 1971, the term, biotechnology, was primarily used in the food processing and agriculture industries. Since the 1970s, it began to be used by the Western scientific establishment to refer to laboratory-based techniques being developed in biological research, such as recombinant DNA or tissue culture-based processes, or horizontal gene transfer in living plants, using vectors such as the Agrobacterium bacteria to transfer DNA into a host organism. In fact, the term should be used in a much broader sense to describe the whole range of methods, both ancient and modern, used to manipulate organic materials to reach the demands of food production. So the term could be defined as, "The application of indigenous and/or scientific knowledge to the management of (parts of) microorganisms, or of cells and tissues of higher organisms, so that these supply goods and services of use to the food industry and its consumers.
  • Biotechnology combines disciplines like genetics, molecular biology, biochemistry, embryology and cell biology, which are in turn linked to practical disciplines like chemical engineering, information technology, and robotics.
Applications

Biotechnology has applications in four major industrial areas, including health care (medical), crop production and agriculture, non food (industrial) uses of crops and other products (e.g. biodegradable plastics, vegetable oil, biofuels), and environmental uses.

For example, one application of biotechnology is the directed use of organisms for the manufacture of organic products (examples include beer and milk products). Another example is using naturally present bacteria by the mining industry in bioleaching. Biotechnology is also used to recycle, treat waste, clean up sites contaminated by industrial activities (bioremediation), and also to produce biological weapons.

A series of derived terms have been coined to identify several branches of biotechnology, for example:
  • Red biotechnology is applied to medical processes. Some examples are the designing of organisms to produce antibiotics, and the engineering of genetic cures through genomic manipulation.
  • Green biotechnology is biotechnology applied to agricultural processes. An example would be the selection and domestication of plants via micropropagation. Another example is the designing of transgenic plants to grow under specific environmental conditions or in the presence (or absence) of certain agricultural chemicals. One hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. An example of this is the engineering of a plant to express a pesticide, thereby eliminating the need for external application of pesticides. An example of this would be Bt corn. Whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate.
  • White biotechnology , also known as industrial biotechnology, is biotechnology applied to industrial processes. An example is the designing of an organism to produce a useful chemical. Another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous/polluting chemicals (examples using oxidoreductases are given in Feng Xu (2005) “Applications of oxidoreductases: Recent progress” Ind. Biotechnol. 1, 38-50 [1]). White biotechnology tends to consume less in resources than traditional processes used to produce industrial goods.
  • Blue biotechnology is a term that has been used to describe the marine and aquatic applications of biotechnology, but its use is relatively rare.
  • The investments and economic output of all of these types of applied biotechnologies form what has been described as the bioeconomy.
  • Bioinformatics is an interdisciplinary field which addresses biological problems using computational techniques, and makes the rapid organization and analysis of biological data possible. The field may also be referred to as computational biology, and can be defined as, "conceptualizing biology in terms of molecules and then applying informatics techniques to understand and organize the information associated with these molecules, on a large scale." Bioinformatics plays a key role in various areas, such as functional genomics, structural genomics, and proteomics, and forms a key component in the biotechnology and pharmaceutical sector.
Medicine

In medicine, modern biotechnology finds promising applications in such areas as
  • pharmacogenomics;
  • drug production;
  • enetic testing; and
  • gene therapy.
Human Genome Project
  • The Human Genome Project is an initiative of the U.S. Department of Energy (“DOE”) that aims to generate a high-quality reference sequence for the entire human genome and identify all the human genes.
  • The DOE and its predecessor agencies were assigned by the U.S. Congress to develop new energy resources and technologies and to pursue a deeper understanding of potential health and environmental risks posed by their production and use. In 1986, the DOE announced its Human Genome Initiative. Shortly thereafter, the DOE and National Institutes of Health developed a plan for a joint Human Genome Project (“HGP”), which officially began in 1990.
  • The HGP was originally planned to last 15 years. However, rapid technological advances and worldwide participation accelerated the completion date to 2005. Already it has enabled gene hunters to pinpoint genes associated with more than 30 disorders.
Current Research
  • In January 2008, Christopher S. Chen made an exciting discovery that could potentially alter the future of medicine. He found that cell signaling that is normally biochemically regulated could be simulated with magnetic nanoparticles attached to a cell surface. The discovery of Donald Ingber, Robert Mannix, and Sanjay Kumar, who found that a nanobead can be attached to a monovalent ligand, and that these compounds can bind to Mast cells without triggering the clustering response, inspired Chen’s research. Usually, when a multivalent ligand attaches to the cell’s receptors, the signal pathway is activated. However, these nanobeads only initiated cell signaling when a magnetic field was applied to the area, thereby causing the nanobeads to cluster.
  • It is important to note that this clustering triggered the cellular response, not merely the force applied to the cell due to the receptor binding. This experiment was carried out several times with time-varying activation cycles. However, there is no reason to suggest that the response time could not be reduced to seconds or even milliseconds. This low response time has exciting applications in the medical field. Currently it takes minutes or hours for a pharmaceutical to affect its environment, and when it does so, the changes are irreversible. With the current research in mind, though, a future of millisecond response times and reversible effects is possible. Imagine being able to treat various allergic responses, colds, and other such ailments almost instantaneously. This future has not yet arrived, however, and further research and testing must be done in this area, but this is an important step in the right direction.
Biological engineering
  • Biotechnological engineering or biological engineering is a branch of engineering that focuses on biotechnologies and biological science. It includes different disciplines such as biochemical engineering, biomedical engineering, bio-process engineering, biosystem engineering and so on. Because of the novelty of the field, the definition of a bioengineer is still undefined. However, in general it is an integrated approach of fundamental biological sciences and traditional engineering principles.
  • Bioengineers are often employed to scale up bio processes from the laboratory scale to the manufacturing scale. Moreover, as with most engineers, they often deal with management, economic and legal issues. Since patents and regulation (e.g. FDA regulation in the U.S.) are very important issues for biotech enterprises, bioengineers are often required to have knowledge related to these issues.
  • The increasing number of biotech enterprises is likely to create a need for bioengineers in the years to come. Many universities throughout the world are now providing programs in bioengineering and biotechnology (as independent programs or specialty programs within more established engineering fields).

No comments: